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:Abstract

Computational fluid dynamics calculations have been performed for a multibody system
consisting of a main projectile and three sabot components. Numerical flow field computations
have been made for various orientations and locations of sabots using an unsteady, zonal Navier-
Stokes code and the Chimera composite grid discretization technique at M, = 4.0 and & = 0°.
Computational grids have been obtained for the projectile and sabot independently and then
overset to form the complete grid system. Computed results have been obtained for sabot angles
of attack of 5, 10, 15, and 25°. Computed results show the details of the expected flow field
features including the shock interactions. Both laminar and turbulent computations for the 25°
case predict similar results. Computcd results for other sabot positions are compared with the
experimental data obtained in Canada for the same configuration and condmons and are
generally found to be in good agreement with the. data
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1. Introduction

During the gun-launch process of modern fin-stabilized kinetic energy projectiles, sabots are
utilized to reduce in-bore balloting and smoothly carry the projectiles in the gun tube. Once free of
the gun tube, the sabot components must be discarded to reduce the drag of the round. Good sabot
separation is important to obtain a repeatable launch and flight of the projectiles. It has been
demonstrated [1] that aerodynamic interference during the launch process can adversely affect the
projectile trajectory and increase on-target dispersion. Mechanical interference during the sabot
separation can also alter the projectile trajectory and may lead to unacceptable loss of accuracy at
the target. The aerodynamic interference of the projectile and sabot flow field is quite complex (see
Figure 1) and involves three-dimensional (3-D) shock/boundary layer interactions and separated flow
regions. The sabot separation in actual flights can be asymmetrical which can further magnify the

interference effects.

Figure 1. Spark Shadowgraph for a Projectile-Sabot System.




The sabot discard aerodynamics have been studied both théoretically and experimentally over
the past few decades. Initial analytical modeling efforts [2] were empirical and based on Newtonian
flow approximations. Although not general, this technique accurately medeled the flow in some
cases. A more recent extension [3] of this modeling effort included an integrated flow element
approach that utilized local shock/expansion procedures based on actual experimentally measured
sabot surface pressures. Again, these analytical modeling techniques have their limitations, and in
general, these theories cannot completely represent the complex flow fields associated with the

interaction of the projéctile and sabot flow fields.

An extensive experimental program [4,5] was carried out in 1981 to study the aerodynamics of
sabot discard. Surface pressures were obtained experimentally on a generic configuration consisting
of a projectile and three sabot components. The experimental test results showed regions of
shock/boundary-layer interactions and separated flow regions. Recently, another experimental study
{6] was conducted that included detailed pressure measurements on a generic cone-cylinder
projectile as well as a full-scale model of the C-76 projectile. The generic configuration was chosen
to provide calibration for computational fluid dynamics (CFD) modeling efforts. As pointed out
earlier, the projectile and sabot interacting flow field is quite complex with 3-D shock/boundary-
layer interactions and regions of separated flow. The CFD modeling technique is an emerging tool
which can account for these 3-D interactions. Recent papers [6-8] show a rise in the use of CFD to
accurately predict such flow fields. Often, the computed results are found to be in good agreement
with the experimental data. These computational studies have provided enhanced understanding of
the complex interacting flow fields; however, they used a steady-state approach. Research presented
in this report emphasizes the use of an édvanced CFD capability that can compute both steady-state

and time-dependent sabot discard acrodynamics.

The advanced CFD capability used here solves the Navier-Stokes equations [9] and incorporates
the Chimera technique [10-13]. The Chimera technique involves generating independent grids about
each component and then oversetting them onto a base grid to form the complete model. With this
composite overset grid approach, it is possible to use different grid topologies for the projectile and
the sabot components, respectively. A complete model of the multibody system is thus made, and



the sabot discard aerodynamics can then be determined. Numerical flow field computations have
been made for the projectile and sabot multibody system at a supersonic speed for symmetric sabot
discard. Computed results have been compared with the experimental data [6] obtained for the same

configuration and flow conditions. .

2. Solution Technique

2.1 Governing Equations. The complete set of 3-D, timc-depencicnt, generalized geometry,
Reynolds-averaged, thin-layer Navier-Stokes equations is solved numerically to obtain a solution
to this problem and can be written in general spatial coordinates &, 1, and { as follows [14]:

0.4 +0,F+9,G+3 H=Re9.38, (1)

In Equation 1, a contains the dependent variables: density, three velocity components, and energy.
The thin-layer approximation is used here, and the viscous terms involving velocity gradients in
both the longitudinal and circumferential directions are neglected. The viscous terms are retained
in the normal direction, {, and are collected. into the vector §. These viscous terms are used

everywhere.

2.2 Numerical Technique. The implicit, approximately factored scheme for the thin-layer
Navier-Stokes equations using central differencing in the 1 and { directions and upwinding in € is

written in the following form [14]:

[I + h&J (AT + h8,C" - hRe 18, I 'M"J - D {q]
x [I+h&(A™)" +1h8 B" - D;[,14Q"
= -AUB(FTP -E ]+ & (B ) - B +8,(6" - 6,)

+ 8 (H" - A,) -Re"8(8" - §)} - D (Q" - Q.), )



where & = At or (Ar)/2 and the free-stream base solution is used. Here, 0 is typically a three-point
second-order accurate central difference operator, § is a midpoint operator used with the viscous
terms, and the operators 55" and E)Ef are backward and forward three-point difference operators. The
flux £ has been eigensplit, and the matrices A, B, &, and M result from local linearization of the
fluxes about the previous time level. Here, J denotes the Jacobian of the coordinate transformation.

Dissipation operators D, and D; are used in the central space differencing directions.

2.3 Chimera Composite Grid Technique. The Chimera overset grid scheme is a domain
decomposition approach where a full configuration is meshed using a collection of independent
overset grids. This allows each component of the configuration to be gridded separately and overset
into a main grid. Overset grids are not required to join in any special way. Usually, a major grid
covers the entire domain or a grid is generated about a dominant body section. Minor grids are
generated about the rest of the bodies or sections. Because each component grid is generated
independently, portions of one grid may be found to lie within a solid boundary contained within
another grid. Such points lie outside the computational domain and are excluded from the solution
process. Equation 2 has been modified for Chimera overset grids by the introduction of the flag i,
to achieve just that, This i, array accommodates the possibility of having arbitrary holes in the grid.
The i, array is defined such that i, = 1 at normal grid points and i , = O at hole points. Thus, when
i, = 1, Equation 2 becomes the standard scheme. But, when i, = 0, the algorithm reduces to Aé P
0or Q - é ", leaving Q\ ‘unchangcd at hole points. The set of grid points that form the border
between the hole points and the normal field points are called intergrid boundary points. These
points are updated by interpolating the solution from the overset grid that created the hole. Values
of the i, array and the interpolation coefficients needed for this update are provided by a separate _
algorithm [10]. The Chimera procedure reduces a complex problem into a number of simpler
subproblems, Computations are performed on each grid separately. The grids are developed to use
the available core memory one grid at a time. The remaining grids are stored on an external disk
storage device such as the solid-state disk (SSD) device of the Cray Y-MP computer. A major part
of the Chimera overset grid approach is the information transfer from one grid into another by means
' of the intergrid boundary points. ' L



2.4 Boundary Conditions. For simplicity, most of the boundary conditions have been imposed
explicitly [9]. An adiabatic wall boundary condition is used on the body surface, and the no-slip
boundary condition is used at the wall. The pressure at the wall is calculated by solving a combined
momentum equation. Free-stream boundary conditions are used at the inflow boundary as well as
at the outer boundary. A symmetry boundary condition is imposed at the circumferential edges of
the grid, while a simple extrapolation is used at the downstream boundary. A combination of
symmetry and extrapolation boundary condition is used at the center line (axis). Since the free-
stream flow is supersonic, a nonreflection boundary condition is used at the outer boundary. The
outer boundary of the sabot grid completely lies within the background projectile grid and, thus, gets
its flow field information interpolated from the projectile grid.

3. Model Geometry and Computational Grid

An advantage of the Chimera technique is that it allows computational grids to be obtained for
each body component separately and, thus, makes the grid generation process easier. Figure 2 shows
a computational grid for the complete model, including the projectile and sabot. This grid
corresponds to the sabot angle of attack of 25°. The projectile grid consists of two zones (zone 1
and zone 2) that include a small zone (zone 1) in front of the projectile nose. Each of these two zones
is a rectangular grid. The grid around the sabot also consists of two zones (zone 3 and zone 4) and
was obtained using an O-topology and a rectangular topology, respectively. Figure 2 also shows the
sabot grid (zone 3). The sabot grids were individually generated and then overset as shown in this
figure to form the complete grid system. The computational grids shown here correspond to the pitch
plane. The zone 2 projectile grid serves as the main background grid for the computation. The grid
in zone 3 is an O-grid around the sabot petal. The grid in zone 4 sits along the edge of the éabot
petal (not shown in this figure). Figure 3 shows a computational grid for computations with the
sabot petal at angle of attack of 10°. Again, the same sabot grids are used here for this run, and there
was no need to regenerate new sabot grids. The same sabot grids were also used for two other cases,
which correspond to sabot angles of attack of 5° and 15°. In each case, the dimensions of different

zones are as follows: zone 1, 16x32x80; zone 2, 86x32x80; zone 3, 72x32x30; and zone 4,



60x20x40. The entire grid system consisted of 378,240 grid points. Note that the grid setup allows
computation of the base region flow field of the sabots. Grid points are clustered near the projectile
and the sabot surfaces to capture the viscous boundary layers. No attempt has been made to adapt

the computational grids to gradients in the flow field variables.

Figure 2. Computational Grid, Sabot Angle of Attack = 25°.

Figure 3. Computational Grid, Sabot Angle of Attack = 10°.

4. Results

Steady-state numerical calculations have been performed to numerically simulate the projectile
and the sabot system. All computations have been run at M, = 4.0 and for the same test conditions
corresponding to the Canadian experiments [6]. Computational modeling is restricted to the

symmetric sabot discard. Here, the projectile is at zero degrees angle of attack and three sabots are




discarded symmetrically following the same radial trajectory away from the projectile. Figure 4
shows a schematic diagram of the projectile and the sabot system. Since symmetric sabot discard is
of interest here, the computational domain consists of a 60° segment, as shown in Figure 4. Also
shown is the sabot grid, which is entirely contained in the background projectile grid. Because of
symmetry, the requirements for grid sizes, computer resources such as computer memory, and run

time are reduced.

Sabot K = 31 ——]
SabhotK =1

Projectile K = 31 ——@» : Projectile K = 1

Projeatile

Sabot Petsl &

Figure 4, Schematic Diagram Showing the Computational Domain

Initially, a converged result for the sabot at 25° angle of attack was obtained. Figure 5 shows
the computed Mach contours for this case. It shows the computed Mach contours for a

circumferential cross-sectional plane which cuts through the projectile and the sabots. Although
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Figure 5. Shock Interactions in the Cross-Sectional Plane (Projectile and Sabots).

Figure 6. Computed Pressure Contours, M = 4.0, Sabot Angle of Attack = 25°, Laminar and

Turbulent Solutions.




computations are berfdrmed only for a 60° sector due to symmetry, the computed results are shown
here for the entire projectile and the sabot system. This figure clearly shows the shock interactions
associated with the projectile and the sabot system. Figure 6 shows the computed pressure contours
for the 25° sabot angle of attack case in the pitch i)lane. Both laminar and tufbulent computations
were performed and only small differences were observed between these results, especially near the
sabot shock impingemerit point on the projectile. The turbulent calculations show slightly larger
regions of shock-boundary layer interactions. The wind tunnel data for this case, however, was later
found to have suffered from the wall blockage effects, and thus, numerical results for this case were
not compared with the data. It shows an oblique shock wave emanating from the nose of the
projectile and a detached bow shock in front of the sabot petal. The interactions of the projectile and
the sabot flow fields can be seen clearly. Downstream of the shock-interaction point, a region of
high pressure and low velocity exists. Based on the shock strengths, this interacting flow region may
include regions of flow separation in addition to shock-boundary layer interactions. The computed
result shown corresponds to the symmetry plane. A nonreflection outer boundary is used, which
allows the outer boundary of the Background computational grids to be placed near the sabots.

The next set of computed results corresponds to the B5, B10, and B15 cases. These three cases
correspond to sabot angles of attack of 5°, 10°, and 15°. The projectile is at zero degrees angle of
attack for all these cases. As st‘ated earlier, the background grid for the projectile remains the same.
The sabot grids again are the same but have been moved to the new positions and orientations.
Figure 7 shows the pressure contours for the projectile and sabot in the symmetry plane. Computed
results here have been obtained for the turbulent flow condition using an algebraic turbulence model.
Similar to the 25° sabot angle of attack case, a nonreflection outer boundary is used, which allows
the outer boundary of the background computational grids to be placed near the sabots. This figure
clearly shows the interactions of the projectile and the sabot flow fields occurring at different
longitudinal locations along the projectile. The computed pressure contours show the sabot shock
irﬁpinging and reﬂectil‘lg' off the projectile surface. This shock impingement results in a higher
pressure region on the projectile surface just downstream of the impingement point. A high pressure
region can also be observed behind the sabot shock. As expected, the flow behind the base region

of the sabot is a low-pressure region. As the sabot angle of attack is increased, the sabot shock

9



impingement point on the projectile is moved further downstream. For the 5° sabot angle of attack,
the sabot shock impinges on the projectile, reflects from the projectile surface, and impinges back on
the sabot. The reflected shock from the projectile surface is seen to just miss the base of the sabot
for the 10° sabot angle of attack case and is even further away from the sabot base at 15° sabot angle
of attack. The flow field in the base region of the sabot is also seen to change considerably with an

increase in sabot angle of attack.

B15

B10

Figure 7. Computed Pressure Contours at Different Sabot Angles of Attack, 5°, 10°, and 15°,
M = 4.0.




Figures 8 and 9 show the computed surface pressures, p/p., for the sabot and the projectile,
respectively. Here, X/D = 0.0 corresponds to the nose of the projectile. These computed surface
pressures correspond to the pitch plane and are compared with the experimental data [6]). The
computed pressures on the bottom surface of the sabot are shown in Figure 8 and are generally in
good agreement with the experimental data. Some discrepancies do exist in the comparison of sabot
surface pressure for thie 5° angle of attack case. Due to close proximity of the sabot to the projectile,
the flow field is, as expected, more complicated and includes complex shock-shock and shock-
boundary layer interactions. Accurate computation of the resulting flow field is thus more difficult.
Grid clustering/alignment in the nose region of the sabot may be needed to improve the accuracy of
the numerical solution for this case. Similar experience has been noted by other researchers [6]. For
X/D > 7, the agreement of the cqmputed surface pressures with the data is very good even for the
5° angle of attack case. For this case, there is a secondary pressure rise near X/D = 11, which results
from the reflected shock impinging on the underside of the sabot. This predicted pressure rise
matches very well with the experimental data. As the sabot angle of attack is increased, the
secondary pressure rise is reduced until it is eliminated at the 15° sabot angle of attack. The
agreement of the computed sabot surface pressures with the data is good at angle of attack of 10°
- and 15°. Figure 9 shows the surface pressure distributions on the projectile in the pitch plane.
Computed résults are shown in solid line and are compared with the experimental data shown in dark
circles for 5°, 10°, and 15° degree sabot angles of attack. As seen in this figure, the surface pressure
is almost constant on the nose, which is followed by a pressure drop at the cone-cylinder junction.
This computed pressure drop at the cone-cylinder junction agrees well with the data at the 15° sabot
angle of attack; however, at lower angles of attack, the ﬁgreement is not so good. The predicted flow
on the nose of the projectile corresponds to an undisturbed flow upstream of the shock impingement
point. Clearly, the numerical results do not show the same extent of shock-boundary layer
interactions observed éxperirnenta.lly. Similar results are also. seen‘ in the DREV CFD
predictions [6]. A large pressure increase due to shock wave impinging on the projectile surface is
seen in both computed and experimental data. The locations of the pressure peaks have been
predicted qorrecﬂy and agree well with the data. The magnitudes of the peak are, however, slightly
underpredicted. Additionally, a secondary small peak is observed in the experimentally obtained

surface pressure near X/D = 11 for the 5° case, which is not seen in the computed surface pressures.
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It may be possible to improve the accuracy of the computed results either through grid refinement

and/or use of advanced turbulence modeling, but further analysis has been limited due to time

constraints.
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S. Concluding Remarks

A computational study was undertaken to compute the 3-D flow fields for ﬁ multibody system
consisting of a projectile and sabots. Flow computations were performed at a supersonic Mach
number, M, =4.0 and & = 0.0° using a 3-D unsteady Navier-Stokes code and Chimera composite
grid discretization technique. Overset body conforming grids were used to individually model the
projectile and the sabot components. Compﬁted results have been obtained for sabot angles of attack
of 5°,10°, 15° and 25°, Computed results show the qualitative features of the complex shock
interaction flow field for the projectile and the sabots. Both laminar and turbulent computed results
have been obtained for the 25° case, and the computed results do not show appreciable change in
the surface pressures. Computed results for this case have not been compared with the experimental
results due to blockage effects encountered in the tests. Computed results for the other three sabot
positions are compared with the experiméntal data obtained at DREV, Canada, for the same
configuration and conditions and are generally found to be in good agreement with the data. In some
cases, discrepancies exist between the computed surface pressures and experimental data. Grid
refinement and use of advanced turbulence modeling Ihay be needed to further improve the accuracy
of the computed results. Future study will include modeling of asymmetric sabot discard, which will

require full 3-D computations and large computing resources.
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